

Fig. 2. The unit-cell contents projected down the b axis. O atoms are represented by filled circles and hydrogen bonds by dashed lines. The labelling is shown only for N atoms in the cation and for O atoms in the anion related to that defined by the coordinates in Table 2 by the transformation $\frac{1}{2}+x,-\frac{1}{2}-y, 1+z$. H atoms are omitted.
with the large and very anisotropic displacement parameters of the F atoms, may indicate some disorder of the trifluoromethyl group.

The crystal structure consists of layers of $\left[\mathrm{Ru}(\mathrm{tu})_{6}\right]^{2+}$ cations with the metal atoms lying exactly on the 001 planes. Anions lie between these layers; each is hydrogen bonded to four cations,
three in the same layer and one in an adjacent layer. Adjacent cations are also directly linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (see Fig. 2 and Table 3).

References

Abrams, M. J., Davison, A., Faggiani, R., Jones, A. G. \& Lock, C. J. L. (1984). Inorg. Chem. 23, 3284-3288.

Berta, D. A., Spofford, W. A., Boldrini, P. \& Amma, E. L. (1970). Inorg. Chem. 9, 136-142.

Elcombe, M. M. \& Taylor, J. C. (1968). Acta Cryst. A24, 410-420.
Goldberg, I. \& Herbstein, F. H. (1972). Acta Cryst. B28, 400-405.
Kallen, T. W. \& Earley, J. E. (1971). Inorg. Chem. 10, 11491151.

Kaziro, R., Hambley, T. W., Binstead, R. A. \& Beattie, J. K. (1989). Inorg. Chim. Acta, 164, 85-91.

Larson, A. C. (1970). In Crystallographic Computing, edited by F. R. Ahmed, Copenhagen: Munksgaard.

Lundgren, J.-O. (1978). Acta Cryst. B34, 2428-2431.
Mallinson, P. R. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
NaKamoto, K. (1978). Infrared and Raman Spectra of Coordination Compounds, 3rd ed. New York: Wiley-Interscience.
Patel, A. (1988). PhD Thesis, Univ. of Stirling, Scotland.
Rawle, S. C. \& Cooper, S. R. (1987). J. Chem. Soc. Chem. Commun. pp. 308-309.
Truter, M. R. (1967). Acta Cryst. 22, 556-559.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Weininger, M. S., O'Connor, J. E. \& Amma, E. L. (1969), Inorg. Chem. 8, 424-431.
Yaffe, R. P. \& Voigt, A. F. (1952). J. Am. Chem. Soc. 74, 2503-2506.

Structures of
 c-Acetonitrile-ab-dibromo- d-carbonyl-ef-bis(triphenylphosphine)osmium (2 +) and \boldsymbol{b}-Acetonitrile-af-dibromo- \boldsymbol{d}-carbonyl-ce-bis(triphenylphosphine)osmium (2+)

By P. D. Robinson*
Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA
and Iffat A. Ali and C. C. Hinckley
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA

(Received 16 October 1990; accepted 2 January 1991)

Abstract

II). $\left[\right.$ cis- $\left.\mathrm{OsBr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)(\mathrm{CO})\left\{\mathrm{P}_{(}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$, $M_{r}=943 \cdot 65$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=13 \cdot 278$ (5), $b=24 \cdot 462(8), c=10 \cdot 823$ (3) $\AA, V=3515$ (2) \AA^{3}, Z $=4, D_{x}=1.783 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo K α) $=0.71069 \AA, \mu$ $=60.03 \mathrm{~cm}^{-1}, F(000)=1832, T=296 \mathrm{~K}, R=0.031$,

^[* To whom all correspondence should be addressed.]

0108-2701/91/071397-05\$03.00

2802 unique observed reflections. (III) [trans$\left.\mathrm{OsBr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)(\mathrm{CO})\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right], \quad M_{r}=943.65$, monoclinic, $P 2_{1} / n, a=10 \cdot 326$ (5), $b=15 \cdot 461$ (10), c $=22.961$ (8) $\AA, \beta=91.15(5)^{\circ}, V=3665$ (5) $\AA^{3}, Z=$ $4, D_{x}=1.710 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=$ $57.58 \mathrm{~cm}^{-1}, \quad F(000)=1832, T=296 \mathrm{~K}, \quad R=0.060$, 3089 unique observed reflections. Compounds (II) © 1991 International Union of Crystallography
and (III) were prepared by dissolving the bioctahedral precursor, $\left\{\mathrm{Os}(\mathrm{CO})\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}\right\}\left(\mu-\mathrm{Br}_{3}\left\{\mathrm{OsBr}_{2^{-}}\right.\right.$ $\left.\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\right\}$, (I), in acetonitrile. Compound (II) has an all-cis geometry in which the two Br atoms are cis to each other, as are the two Os coordinated triphenylphosphines and the CO and acetonitrile ligands. Compound (III) has all-trans geometry, where the two Br atoms and triphenylphosphine ligands are trans to each other, as are CO and acetonitrile ligands.

Introduction. In this paper we report the preparations and crystal structures of two isomers of $\mathrm{Br}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{CO})\left\{\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2} \mathrm{Os}^{\mathrm{II}} \text {. These complexes, }}\right.$ (II) and (III), are related to a group of monocarbonyl compounds of Os obtained by a reaction in which the metal-bound carbonyl is derived from the reaction solvent, acetic acid/acetic anhydride (Robinson, Hinckley \& Ikuo, 1988; Hinckley, Ikuo \& Robinson, 1988; Hinckley, Ali \& Robinson, 1990). They were prepared by reaction of the bioctahedral precursor, (I), with acetonitrile. Of the several isomers possible with this selection of ligands, only these two were obtained.

(I)

(II)

(III)

Experimental. The red precursor complex, $\left\{\mathrm{Os}(\mathrm{CO})\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}\right\}\left(\mu-\mathrm{Br}_{3}\right)_{3}\left\{\mathrm{OsBr}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\right\}$, (I), was prepared by refluxing under N_{2} a solution containing di(tetra- n-butylammonium) hexabromoosmate(IV) ($1.830 \mathrm{~g}, 1.585 \mathrm{mmol}$) and triphenylphosphine ($1.469 \mathrm{~g}, 5.60 \mathrm{mmol}$) in 50 ml mixed acetic acid/acetic anhydride ($40 / 10$) solvent for 24 h . Red solid product, (I), was separated by filtration (yield: $1 \cdot 105 \mathrm{~g}, 0.693 \mathrm{mmol}$). Acetonitrile and diethyl ether were used as supplied. Acetonitrile was added to a small amount (0.5 g) of (I) with continuous stirring under N_{2}. Initial red solution changed to orange with a pale-green precipitate in a few hours. Orange solution was separated from precipitate by decantation and layered with diethyl ether. X-ray-quality orange crystals of (II) were obtained in 3-4 d. Light-green X-ray-quality crystals of (III) were obtained in 24 h from a dichloromethane solution of the complex layered with diethyl ether. Infrared spectra of Nujol mulls exhibited CO stretching absorptions at $1950 \cdot 2$ for (II) and $1924.7 \mathrm{~cm}^{-1}$ for (III).
Crystals used for data collection: $0.25 \times 0.20 \times$ 0.17 mm , orange, equant (II); $0.35 \times 0.15 \times 0.03 \mathrm{~mm}$, green, platy (III). Much difficulty was encountered in finding a high-quality crystal of (III); crystal utilized was best of ten surveyed but gave relatively broad
and occasionally asymmetric peak shapes; refinement results were not expected to be of the highest quality. Rigaku AFC5S diffractometer, graphite-monochromated Mo $K \alpha$ radiation, ω scans, scan speeds $4^{\circ} \min ^{-1}$ (II) and $3^{\circ} \min ^{-1}$ (III), weak reflections [I $<10 \cdot 0 \sigma(I)]$ rescanned (maximum of two rescans) and the counts accumulated to assure good counting statistics. Lattice parameters from least-squares fit of 25 strong reflections in 2θ ranges $36-41$ (II) and $24-29^{\circ}$ (III). A total of 3476 (II) and 6431 (III) reflections measured [$h 0$ to $15, k 0$ to $29, l 0$ to 12 for (II); $h 0$ to $12, k 0$ to 18, $l-27$ to 27 for (III)], 674 (II) and 3342 (III) reflections considered unobserved with [$I<3 \sigma(I)$], data sets comprised of 2802 (II) and 3089 (III) unique reflections, $(\sin \theta / \lambda)_{\max }=0.60 \AA^{-1}$. Three standard reflections [101, 021, 241 (II); $0 \overline{2} 0$, $\overline{1} 11, \overline{1} 15$ (III)] changed by $0 \cdot 9,1 \cdot 3$ and $1 \cdot 4 \%$ (II) and $-1 \cdot 2,-1.0$ and -1.4% (III); no decay corrections applied. Data corrected for Lorentz, polarization, and absorption [empirical ψ scan corrections, five (II) and three (III) reflections, transmission ranges $0.81-1.00$ (II) and $0.54-1.00$ (III)]. The direct methods program MITHRIL (Gilmore, 1984) provided the atomic coordinates of the Os atom for (II) and the Os and Br positions for (III). The phase extension program DIRDIF (Beurskens, 1984) used to locate Br and P atoms of (II). The remaining non-H atoms of both (II) and (III) were located by least-squares and difference Fourier syntheses. Fullmatrix least-squares refinement was performed to minimize $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right)$ and $\sigma^{2}\left(F_{o}^{2}\right)=\left[S^{2}\left(C+R^{2} B\right)+\left(p F_{o}^{2}\right)^{2}\right] / \mathrm{Lp}^{2}(S=$ scan rate, $C=$ total integrated peak count, $R=$ ratio of scan time to background counting time, $B=$ total background count, $\mathrm{Lp}=$ Lorentz and polarization factor, and $p=0.03$). After convergence, phenyl ring and methyl H atoms were placed at idealized positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$), and fixed (isotropic B 's for H atoms calculated as $1.2 \times B_{\text {eq }}$ of associated C atom); rotational orientation of methyl groups obtained from difference Fourier synthesis for both (II) and (III). Final cycles of refinement performed with 415 (II) and 405 (III) variables including all non-H positional and anisotropic thermal parameters [with the exception of the CO ligand of (III), which was refined isotropically] and one scale factor. Convergence of (II) and (III) yielded $R=0.031$ and 0.060 , $w R=0.032$ and $0.064, S=1.04$ and 1.61 , and $(\Delta / \sigma)_{\max }=0.06$ and 0.03 . Final difference syntheses for (II) and (III) produced $(\Delta \rho)_{\text {max }}=0.72$ and $2.99 \mathrm{e} \AA^{-3}$, and $(\Delta \rho)_{\text {min }}=-0.68$ and $-1.47 \mathrm{e} \AA^{-3}$, all near the Os position. Atomic scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 71, 148). All computer programs from the TEXSAN package (Molecular Structure Corporation, 1985).

Table 1. Positional and equivalent isotropic thermal parameters for the non- H atoms and their e.s.d.'s

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right)\left[U_{22}+\left(1 / \sin ^{2} \beta\right)\left(U_{11}+2 U_{33}+2 U_{13} \cos \beta\right)\right]$.				
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Compound (II)				
$\mathrm{Os}(1)$	0.48728 (3)	0.66680 (2)	0.27753 (4)	1.81 (1)
$\mathrm{Br}(1)$	0.41897 (8)	0.76195 (5)	$0 \cdot 2103$ (1)	3.09 (5)
$\mathrm{Br}(2)$	0.4343 (1)	0.63363 (6)	0.0590 (1)	$3 \cdot 48$ (6)
$\mathrm{P}(1)$	0.5859 (2)	0.5926 (1)	0.3521 (3)	2.4 (1)
$\mathrm{P}(2)$	0.3242 (2)	$0 \cdot 6422$ (1)	0.3484 (3)	2.1 (1)
$\mathrm{C}(1)$	0.7222 (8)	0.6116 (5)	$0 \cdot 348$ (1)	2.8 (5)
$\mathrm{C}(2)$	0.7932 (8)	0.5788 (5)	$0 \cdot 291$ (1)	3.7 (6)
C(3)	0.892 (1)	$0 \cdot 5966$ (6)	0.283 (2)	4.7 (7)
C(4)	0.9234 (9)	0.6446 (6)	0.333 (1)	4.2 (7)
C(5)	0.853 (1)	0.6766 (6)	$0 \cdot 391$ (1)	4.4 (7)
C(6)	0.7547 (9)	0.6608 (6)	$0 \cdot 399$ (1)	3.7 (6)
C(7)	0.5890 (8)	0.5247 (4)	0.278 (1)	$2 \cdot 9$ (5)
C (8)	0.602 (1)	$0 \cdot 4779$ (7)	$0 \cdot 342$ (2)	5.4 (9)
C(9)	$0 \cdot 605$ (1)	$0 \cdot 4268$ (6)	0.285 (2)	6 (1)
$\mathrm{C}(10)$	0.598 (1)	$0 \cdot 4245$ (7)	0.159 (2)	7 (1)
C(11)	0.587 (1)	0.4704 (8)	0.094 (2)	6 (1)
$\mathrm{C}(12)$	$0.582(1)$	0.5213 (6)	0.150 (1)	$5 \cdot 1$ (8)
C(13)	0.5660 (8)	0.5755 (4)	0.516 (1)	2.4 (5)
C(14)	0.483 (1)	0.5412 (4)	0.547 (1)	$3 \cdot 1$ (5)
C(15)	0.460 (1)	0.5307 (6)	0.671 (1)	$4 \cdot 3$ (7)
C(16)	0.519 (1)	0.5532 (6)	0.763 (1)	$5 \cdot 2$ (7)
C(17)	0.600 (1)	$0 \cdot 5850$ (6)	0.732 (1)	5.6 (8)
C(18)	0.625 (1)	0.5966 (5)	0.611 (1)	$3 \cdot 7$ (6)
$\mathrm{C}(19)$	0.2934 (8)	0.5684 (5)	0.353 (1)	2.5 (5)
C(20)	0.225 (1)	$0 \cdot 5487$ (5)	0.440 (1)	$3 \cdot 8$ (6)
C(21)	$0 \cdot 207$ (1)	$0 \cdot 4929$ (5)	0.447 (1)	4.1 (7)
C(22)	0.255 (1)	$0 \cdot 4568$ (6)	0.371 (1)	4.4 (7)
C(23)	0.321 (1)	$0 \cdot 4769$ (5)	0.281 (1)	$3 \cdot 6$ (6)
C(24)	0.3408 (7)	0.5329 (4)	0.276 (1)	$2 \cdot 6$ (5)
C(25)	$0 \cdot 2888$ (8)	0.6628 (5)	0.505 (1)	2.4 (5)
C(26)	0.1887 (8)	0.6747 (5)	0.535 (1)	$3 \cdot 1$ (6)
C(27)	0.162 (1)	$0 \cdot 6823$ (5)	0.659 (1)	4.3 (7)
C(28)	0.231 (1)	0.6783 (5)	0.750 (1)	4.0 (7)
C(29)	0.331 (1)	0.6670 (5)	0.721 (1)	4.0 (6)
C(30)	0.3581 (8)	0.6582 (4)	0.602 (1)	2.5 (5)
C(31)	0.2228 (7)	0.6689 (5)	0.2515 (9)	2.5 (5)
C(32)	0.1880 (8)	0.7222 (5)	0.265 (1)	3.4 (6)
C(33)	0.114 (1)	0.7438 (7)	$0 \cdot 188$ (2)	$5 \cdot 5$ (9)
C(34)	0.076 (1)	0.7129 (8)	0.097 (1)	5.5 (9)
C(35)	0.109 (1)	0.6586 (7)	0.080 (1)	4.5 (7)
C(36)	0.183 (1)	0.6369 (6)	0.159 (1)	4.4 (7)
C(37)	0.5205 (8)	0.7042 (4)	0.428 (1)	2.5 (5)
O(1)	0.5365 (6)	0.7267 (3)	0.5039 (8)	2.8 (4)
$\mathrm{N}(1)$	0.6157 (7)	0.6906 (4)	0.1817 (8)	2.4 (4)
$\mathrm{C}(38)$	0.6861 (9)	0.6979 (5)	0.124 (1)	$3 \cdot 2$ (6)
C(39)	0.778 (1)	0.7090 (6)	0.054 (1)	4.9 (8)
Compound (111)				
$\mathrm{Os}(1)$	0.96184 (7)	0.22537 (5)	0.65042 (4)	$2 \cdot 39$ (3)
$\operatorname{Br}(1)$	1.1467 (2)	0.3124 (1)	0.6975 (1)	$3 \cdot 9$ (1)
$\mathrm{Br}(2)$	0.8114 (2)	$0 \cdot 1104$ (2)	0.6091 (1)	$4 \cdot 8$ (1)
$\mathrm{P}(1)$	0.8741 (5)	0.1982 (3)	0.7444 (2)	2.6 (2)
$\mathrm{P}(2)$	1.0535 (5)	0.2443 (3)	0.5566 (2)	$2 \cdot 9$ (3)
$\mathrm{N}(1)$	1.091 (2)	0.119 (1)	$0 \cdot 6652$ (7)	$3 \cdot 3$ (9)
C(1)	0.950 (2)	0.108 (1)	0.780 (1)	3 (1)
C(2)	0.910 (2)	0.021 (1)	0.767 (1)	5 (1)
C(3)	0.975 (3)	-0.046 (2)	0.791 (2)	8 (2)
C(4)	1.075 (4)	-0.035 (3)	0.826 (2)	10 (3)
C(5)	1.117 (3)	0.047 (3)	0.841 (1)	9 (2)
C(6)	1.056 (2)	$0 \cdot 117$ (2)	0.815 (1)	6 (1)
C(7)	0.699 (2)	0.174 (1)	0.7490 (9)	2 (1)
C(8)	0.612 (2)	$0 \cdot 210$ (1)	0.711 (1)	4 (1)
$\mathrm{C}(9)$	0.478 (2)	$0 \cdot 200$ (2)	0.720 (1)	5 (1)
$\mathrm{C}(10)$	0.435 (2)	0.154 (2)	0.765 (1)	5 (1)
C(11)	0.521 (2)	0.114 (2)	0.802 (1)	5 (1)
$\mathrm{C}(12)$	0.654 (2)	0.125 (2)	0.795 (1)	4 (1)
C(13)	0.883 (2)	0.284 (1)	0.7981 (8)	$2 \cdot 5$ (9)
C(14)	0.896 (2)	0.369 (1)	0.781 (1)	4 (1)
C(15)	0.888 (2)	0.435 (1)	0.823 (1)	4 (1)
C(16)	0.874 (2)	0.418 (2)	0.881 (1)	5 (1)
C(17)	0.868 (2)	0.332 (2)	0.898 (1)	5 (1)
C(18)	0.873 (2)	0.265 (1)	0.857 (1)	4 (1)
$\mathrm{C}(19)$	$1 \cdot 126$ (2)	0.349 (1)	0.536 (1)	4 (1)
C(20)	1.204 (4)	0.356 (2)	0.490 (1)	10 (2)
$\mathrm{C}(21)$	1.258 (5)	0.433 (2)	$0 \cdot 470$ (2)	14 (3)
C(22)	1.215 (3)	0.506 (2)	0.499 (1)	7 (2)
C(23)	1.139 (3)	0.504 (1)	0.546 (1)	6 (2)
C(24)	1.093 (2)	0.425 (1)	0.565 (1)	4 (1)
C(25)	1.184 (2)	0.168 (1)	0.547 (1)	4 (1)
$\mathrm{C}(26)$ $\mathrm{C}(27)$	$1.151(2)$ 1.243 (4)	$0.081(1)$ 0.015	$0.529(1)$ $0.527(1)$	$5(1)$ 7

Table 1. (cont.)

	x	y		z
$\mathrm{C}(28)$	$1.366(3)$	$0.040(3)$	$0.544(1)$	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{C}(29)$	$1.410(3)$	$0.118(3)$	$0.563(1)$	$8(2)$
$\mathrm{C}(30)$	$1.309(2)$	$0.184(2)$	$0.565(1)$	$6(1)$
$\mathrm{C}(31)$	$0.949(2)$	$0.228(1)$	$0.4921(9)$	$3(1)$
$\mathrm{C}(32)$	$0.998(3)$	$0.202(2)$	$0.441(1)$	$6(2)$
$\mathrm{C}(33)$	$0.926(3)$	$0.197(2)$	$0.391(1)$	$7(2)$
$\mathrm{C}(34)$	$0.795(3)$	$0.216(2)$	$0.392(1)$	$6(2)$
$\mathrm{C}(35)$	$0.741(2)$	$0.241(1)$	$0.444(1)$	$5(1)$
$\mathrm{C}(36)$	$0.820(2)$	$0.246(1)$	$0.493(1)$	$4(1)$
$\mathrm{C}(37)$	$1.159(2)$	$0.064(2)$	$0.675(1)$	$4(1)$
$\mathrm{C}(38)$	$1.243(2)$	$-0.006(1)$	$0.687(1)$	$5(1)$
$\mathrm{O}(1)$	$0.793(1)$	$0.3682(8)$	$0.6314(5)$	$1.9(2)$
$\mathrm{C}(39)$	$0.840(2)$	$0.329(1)$	$0.637(1)$	$3.8(5)$

Fig. 1. Molecular configuration and atom-numbering scheme for molecule (II). Thermal ellipsoids at the 50% probability level; ring H atoms omitted to improve clarity.

Discussion. The molecular configurations of the title isomers, (II) and (III), are presented in Figs. 1 and 2. Table 1 presents atomic coordinates and equivalent isotropic temperature factors for (II) and (III); selected bond distances and angles for the two structures are given in Table 2.* In both complexes, Os atoms are six coordinate with the bonds arranged in a distorted octahedron. Each Os atom is bound to two Br atoms, two P atoms of coordinating triphenylphosphine ligands, the N atom of an acetonitrile ligand and the C atom of a carbonyl ligand. In the cis complex, the two Br atoms are cis to one another as are the two triphenylphosphines. The carbonyl

* Lists of structure factors, H -atom coordinates, anisotropic thermal parameters, distances and angles involving the phenyl rings, intermolecular distances, and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53884 (79 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
ligand and the coordinated acetonitrile ligand are also cis to one another, so that (II) may be considered 'all cis'. The trans complex, (III), is 'all trans', the Br atoms are trans, as are the triphenylphosphines, and the two remaining ligands, carbonyl and acetonitrile.
In (II), the $\mathrm{Os}-\mathrm{Br}$ bond distances are 2.602 (1) and $2 \cdot 598$ (1) \AA, which are somewhat longer than the average distance ($2.561 \AA$) found in similar compounds (Robinson, Hinckley \& Ikuo, 1988; Hinckley, Ikuo \& Robinson, 1988; Hinckley, Ali \& Robinson, 1990). The Os-P distances for the cis phosphine ligands in (II) are $2 \cdot 375$ (3) and $2 \cdot 379$ (3) \AA, and in (III), where the phosphines ligands are trans, these distances are 2.394 (6) and $2 \cdot 388$ (6) \AA. Differences between $\mathrm{Os}-\mathrm{P}$ bond distances in (II) and (III) may be due to electronic effects. In (III), the trans phosphines must compete directly for π-bonding electrons, while in (II), cis coordination positions the phosphine ligands so that π-bonding electrons are in orthogonal orbitals.
Bond distances involving the acetonitrile ligands in both (II) and (III) are similar, with the largest difference involving the $\mathrm{Os}-\mathrm{N}$ bonds. In (II), the $\mathrm{Os}-\mathrm{N}$ distance is 2.079 (9) \AA, while that distance in (III) is 2.14 (2) \AA. The associated $\mathrm{C}-\mathrm{N}$ bond in (II) is 1.14 (1) and in (III) is $1 \cdot 13$ (2) \AA.
The $\mathrm{P}-\mathrm{Os}-\mathrm{P}$ bond angle in (II) is $101.5(1)^{\circ}$. This relatively large angle can be attributed to steric

Fig. 2. Molecular configuration and atom-numbering scheme for molecule (III). Thermal ellipsoids at the 50% probability level; ring H atoms omitted to improve clarity.

Table 2. Selected bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and their e.s.d.'s

Compound (II)			
$\mathrm{Os}(1)-\mathrm{Br}(1)$	2.602 (1)	$\mathrm{P}(1)-\mathrm{C}(13)$	1.84 (1)
$\mathrm{Os}(1)-\mathrm{Br}(2)$	2.598 (1)	$\mathrm{P}(2)-\mathrm{C}(19)$	1.85 (1)
$\mathrm{Os}(1)-\mathrm{P}(1)$	2.379 (3)	$\mathrm{P}(2)-\mathrm{C}(25)$	1.83 (1)
$\mathrm{Os}(1)-\mathrm{P}(2)$	2.375 (3)	$\mathbf{P}(2)-\mathrm{C}(31)$	1.83 (1)
$\mathrm{Os}(1)-\mathrm{C}(37)$	1.92 (1)	$\mathrm{C}(37)-\mathrm{O}(1)$	1.01 (1)
$\mathrm{Os}(1)-\mathrm{N}(1)$	2.079 (9)	$\mathrm{N}(1)-\mathrm{C}(38)$	$1 \cdot 14$ (1)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.87 (1)	$\mathrm{C}(38)-\mathrm{C}(39)$	1.46 (2)
$P(1)-C(7)$	1.84 (1)		
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{Br}(2)$	86.01 (5)	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	109.5 (4)
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{P}(1)$	165.75 (8)	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$123 \cdot 5$ (5)
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{P}(2)$	89.96 (8)	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	114.9 (4)
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{C}(37)$) 83.7 (3)	$C(1)-P(1)-C(7)$	101.0 (5)
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{N}(1)$	84.0 (2)	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	$102 \cdot 7$ (5)
$\mathrm{Br}(2)-\mathrm{Os}(1)-\mathrm{P}(1)$	102.67 (8)	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$	102.6 (6)
$\mathrm{Br}(2)-\mathrm{Os}(1)-\mathrm{P}(2)$	88.18 (8)	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(19)$	117.2 (4)
$\mathrm{Br}(2)-\mathrm{Os}(1)-\mathrm{C}(37)$) 169.6 (3)	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(25)$	117.6 (4)
$\mathrm{Br}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	81.7 (2)	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	$113 \cdot 3$ (3)
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{P}(2)$	101.5 (1)	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(25)$	100.9 (5)
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(37)$	87.2 (3)	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(31)$	101.6 (5)
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{N}(1)$	$86 \cdot 1$ (3)	$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{C}(31)$	$104 \cdot 1$ (5)
$\mathrm{P}(2)-\mathrm{Os}(1)-\mathrm{C}(37)$	$93 \cdot 3$ (3)	$\mathrm{Os}(1)-\mathrm{C}(37)-\mathrm{O}(1)$	176 (1)
$\mathrm{P}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	168.5 (2)	$\mathrm{Os}(1)-\mathrm{N}(1)-\mathrm{C}(38)$	172 (1)
$\mathrm{C}(37)-\mathrm{Os}(1)-\mathrm{N}(1)$	95.7 (4)	$\mathrm{N}(1)-\mathrm{C}(38)-\mathrm{C}(39)$	178 (2)
Compound (III)			
$\mathrm{Os}(1)-\mathrm{Br}(1)$	2.557 (3)	$\mathrm{P}(1)-\mathrm{C}(13)$	1.81 (2)
$\mathrm{Os}(1)-\mathrm{Br}(2)$	2.533 (3)	$\mathrm{P}(2)-\mathrm{C}(19)$	1.85 (2)
$\mathrm{Os}(1)-\mathrm{P}(1)$	2.394 (6)	$\mathrm{P}(2)-\mathrm{C}(25)$	1.80 (2)
$\mathrm{Os}(1)-\mathrm{P}(2)$	2.388 (6)	$\mathrm{P}(2)-\mathrm{C}(31)$	1.83 (2)
$\mathrm{Os}(1)-\mathrm{N}(1)$	$2 \cdot 14$ (6)	$\mathrm{C}(39)-\mathrm{O}(1)$	0.79 (2)
$\mathrm{Os}(1)-\mathrm{C}(39)$	2.05 (2)	$\mathrm{N}(1)-\mathrm{C}(37)$	1.13 (2)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.80 (2)	$\mathrm{C}(37)-\mathrm{C}(38)$	1.42 (3)
$P(1)-C(7)$	1.85 (2)		
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{Br}(2)$	167.07 (8)	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	112.2 (7)
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{P}(1)$	90.2 (1)	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	118.3 (7)
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{P}(2)$	90.6 (1)	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	118.0 (6)
$\mathrm{Br}(1)-\mathrm{O}(1)-\mathrm{N}(1)$	83.0 (5)	$\mathbf{C}(1)-P(1)-C(7)$	103.8 (9)
$\mathrm{Br}(1)-\mathrm{Os}(1)-\mathrm{C}(39)$	95.8 (6)	$C(1)-P(1)-C(13)$	104 (1)
$\mathrm{Br}(2)-\mathrm{Os}(1)-\mathrm{P}(1)$	88.5 (1)	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$	98.2 (8)
$\mathrm{Br}(2)-\mathrm{Os}(1)-\mathrm{P}(2)$	90.0 (1)	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(19)$	120.2 (7)
$\mathrm{Br}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	84.1 (5)	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(25)$	109.8 (8)
$\mathrm{Br}(2)-\mathrm{Os}(1)-\mathrm{C}(39)$	97.1 (6)	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	118.3 (7)
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{P}(2)$	176.8 (2)	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(25)$	104 (1)
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{N}(1)$	88.2 (5)	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(31)$	99 (1)
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(39)$	91.7 (6)	$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{C}(31)$	104 (1)
$\mathrm{P}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	88.8 (5)	$\mathrm{Os}(1)-\mathrm{C}(39)-\mathrm{O}(1)$	178 (3)
$\mathrm{P}(2)-\mathrm{Os}(1)-\mathrm{C}(39)$	91.3 (6)	$\mathrm{Os}(1)-\mathrm{N}(1)-\mathrm{C}(37)$	178 (2)
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{C}(39)$	178.7 (8)	$\mathrm{N}(1)-\mathrm{C}(37)-\mathrm{C}(38)$	179 (3)

Compound (III)
interactions between the cis-phosphines. In this structure, the Os coordination sphere adopts a very distorted octahedral geometry. In (III), the $\mathrm{P}-\mathrm{Os}-\mathrm{Br}$ bond angles are near 90° and the P and Br atoms bound to the Os atom are angled away from the carbonyl ligand and towards the coordinated acetonitrile group. The angles in (III) may be affected by substitutional disorder involving Br and the carbonyl ligand. Although evidence for the disorder is not evident on difference Fourier maps, the fact that the carbonyl ligand of (III) could not be refined anisotropically, coupled with the unusually short $\mathrm{C}-\mathrm{O}$ distance of 0.79 (2) \AA suggests that very minor $\mathrm{CO} \longleftrightarrow \mathrm{Br}$ substitution could be taking place. We have observed $\mathrm{CO} \longleftrightarrow \mathrm{Br}$ disorder in similar Os complexes (Robinson, Hinckley \& Ikuo, 1988).

This research was supported in part by the Research Corporation. Additional support was provided in matching funds by the Department of

Chemistry and Biochemistry, the College of Science and the Office of Research Development and Administration of SIUC.

References

Beurskens, P. T. (1984). DIRDIF. An automatic procedure for phase extension and refinement of difference structure factors. Tech. Rep. 1984/1. Univ. of Nijmegen, The Netherlands.

Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Hinckley, C. C., Ali, I. A. \& Robinson, P. D. (1990). Acta Cryst. C46, 697-699.
Hinckley, C. C., Ikuo, A. \& Robinson, P. D. (1988). Acta Cryst. C44, 1827-1829.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
Robinson, P. D., Hinckley, C. C. \& Ikuo, A. (1988). Acta Cryst. C44, 1491-1492.

Acta Cryst. (1991). C47, 1401-1403

A BF $\mathbf{2}_{2}$-Bridged Cobalt Dimethylglyoxime Complex

By Kim A. Lance, Wang-Kan Lin and Daryle H. Busch*
Chemistry Department, The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210, USA
and Nathaniel W. Alcock*
Department of Chemistry, University of Warwick, Coventry CV4 7AL, England

(Received 5 October 1990; accepted 8 January 1991)

Abstract

Acetonitrile)chloro(2,2,9,9-tetrafluoro-5,-6,12,13-tetramethyl-1,3,8,10-tetraoxa-4,7,11,14-tetra-aza-1,8-diboracyclotetradeca-4,6,11,13-tetraene- $\kappa^{4} N$)cobalt(III), $\left[\mathrm{CoCl}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]$, $M_{r}=461 \cdot 3$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=9.912$ (1), b $=13.485$ (1), $c=13 \cdot 534$ (1) $\AA, V=1809 \AA^{3}, Z=4$, $D_{x}=1.69, \quad D_{m} \quad$ (flotation) $=1.67 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu($ Mo $K \alpha)=11.5 \mathrm{~cm}^{-1}, F$ $=928, \quad T=292 \mathrm{~K}, \quad R=0.031$ for 2062 unique observed $[I / \sigma(I) \geq 3.0]$ reflections. The molecule contains octahedrally coordinated $\mathrm{Co}^{1 \mathrm{II}}$ with axial Cl and MeCN ; Co-N(dimethylglyoxime) 1.885 (3), $\mathrm{Co}-\mathrm{N}(\mathrm{MeCN}) 1.898$ (3), $\mathrm{Co}-\mathrm{Cl} 2 \cdot 202$ (1) \AA. The BF_{2} groups are displaced from the equatorial coordination plane, alternately up and down.

Introduction. The use of substituted cobalt glyoxime complexes as dioxygen carriers is handicapped by their rapid autoxidation. It has been shown (Lance, Goldsby \& Busch, 1991) that the replacement of the bridging H^{+}atoms in the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ units by BF_{2}^{+} groups leads to a dramatic reduction in the decomposition rate. We now report the X-ray structure of the parent dimethylglyoxime complex containing BF_{2}^{+}groups (I).

Experimental. The complex was prepared as described in Lance et al. (1991). Red platy crystals were obtained from acetonitrile/ether. Data were

[^1]0108-2701/91/071401-03\$03.00
collected with a Nicolet $P 2_{1}$ four-circle diffractometer in the $\omega-2 \theta$ mode. Maximum 2θ was 55° with scan range $\pm 1 \cdot 0^{\circ}(2 \theta)$ around the $K \alpha_{1}-K \alpha_{2}$ angles, scan speed $2-24^{\circ} \mathrm{min}^{-1}$, depending on the intensity of a 2 s pre-scan; backgrounds were measured at each end of the scan for 0.5 of the scan time. hkl ranges were: $0 / 12,0 / 17,0 / 17$.

Six standard reflections were monitored every 100 reflections, and showed only random fluctuations during data collection. Unit-cell dimensions and standard deviations were obtained by a least-squares fit of 15 reflections ($15<2 \theta<25^{\circ}$). Reflections were processed to give 2321 unique reflections, of which 2062 were considered observed [$/ / \sigma(I) \geq 3 \cdot 0$]. These

(I)
© 1991 International Union of Crystallography

[^1]: * Authors to correspondence should be addressed.

